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Quadrupoles in potential flow : two model problems 
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The Ffowcs Williams-Hawkings formulation of the sources of the acoustic analogy is 
examined by reference to two compressible inviscid flows whose density and velocity 
fields are known exactly. The purpose of this exercise is to generate some feel for the 
importance of the various source terms in determining the sound of moving surfaces 
with shocks, and to help quantify the errors involved in approximating those sources. 
Practical applications of the theory involve flows that cannot be known exactly and 
the errors of approximation cannot be checked directly. Progress must start with 
simple cases, and these model problems represent a first move. The flows considered 
are the one-dimensional flow caused by a plane boundary impulsively accelerated 
into a fluid, and the two-dimensional flow due to a wedge moving supersonically and 
supporting a plane attached shock. 

For each of these flows, a system of analogous acoustic sources is developed, the 
fields of which, when superposed, produce a density field (an acoustic field) identical 
with that of the original flow. The acoustic fields generated by the component source 
terms are calculated and compared. This suggests that the volume quadrupoles of 
potential flow play only a minor role as sound generators. When properly viewed the 
field is generated entirely on the bounding surfaces of the flow. A general argument 
shows that volume quadrupoles in steady rectilinear motion only influence the sound 
field through propagation effects. 

1. Introduction 
There is much current research on high-speed surface-induced noise such as that 

generated by helicopter rotors, fans, and unducted propellers. These devices operate 
at  speeds extending to supersonic and produce undesirably high sound levels. 

Sixty years ago Lynam & Webb (1920) conducted the first experiments on high- 
speed rotor noise. At that time there was no theoretical framework in which to inter- 
pret their observations, and their results on the intense directional noise radiated by 
static propellers operating with supersonic tip speeds prompted the subjects’ first 
theoretical analysis by Bryan & Lamb (1920). However, this analysis concerned an 
acoustic model whose simplicity allowed only a qualitative agreement between theory 
and experiment. Even today the sound-generation mechanisms remain imperfectly 
understood. 

Gutin (1940), in an analysis of propeller noise that was later extended by Garrick & 
Watkins (1954), assumed that the sound was generated by the steady rotating thrust 
and drag forces exerted by the blade on the air. Though this was a marked improve- 
ment on past theories, their predictions for the harmonic levels of the field failed to 
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agree with observations on rotors whose tip speeds extended from high subsonic to 
supersonic and their theoretical predictions were particularly inaccurate for the high- 
frequency parts of the spectrum. 

Adapting the acoustic analogy devised by Lighthill (1952), Ffowcs Williams & 
Hawkings (1969) have determined a system of acoustic sources that will create density 
variations in a stationary unbounded uniform acoustic medium identical to those 
density variations occurring in a real fluid in the presence of moving boundaries. 
The source system for the acoustic medium involves dipole and monopole sources 
distributed on surfaces whose shape and disposition are identical to the boundaries 
of the real fluid, and quadrupole sources distributed throughout the fluid. The acoustic 
analogy and its extensions due to Curle (1955) and Ffowcs Williams & Hawkings are 
based solely on the equations of continuity and momentum conservation. Unlike 
previous theories in which the sources are assumed to be known, theirs is a formal 
analogy in which exact conservation relations are manipulated into an inhomogeneous 
wave equation posing a complicated nonlinear diffraction problem; the sources are 
themselves functions of the field strength. 

This version of the acoustic analogy has been the basis for several computational 
researchers on the noise of helicopters (Farassat 1975; Yu & Schmitz 1980), but the 
computed results are not entirely satisfactory. Nor are the results of experiments 
with rotors completely consistent. Boxwell, Yu & Schmitz (1978) report major dis- 
crepancies between full-scale ground, full-scale wind-tunnel, model wind-tunnel, and 
full-scale flight measurements of helicopter blade slap, a directional impulsive sound 
radiated by high-speed rotors. Computer models of these phenomena tend to be in- 
accurate a t  tip speeds near and above sonic. 

The difficulties of computer modelling are that it is not known to what extent the 
analogous sources can be reliably simplified by either discarding some of the source 
terms or approximating the source strengths, and a t  what level of geometric and 
computational sophistication the calculations should be performed. The errors of the 
methods employed have not yet been quantified, and it is extremely difficult to do so. 

It might therefore be worthwhile to examine the acoustic analogy in the context 
of flow fields for which exact results for the various source terms are known, in order 
to see how in these cases neglect of some source terms, in particular the quadrupoles, 
can influence the field. However, in the tractable cases the possibly important effects 
of source rotation do not occur and so these must remain outside the scope of this 
discussion. 

Calculations by Hanson & Fink (1978) of the contribution of the quadrupole sources 
to the in-plane sound of a propeller operating a t  transonic tip speeds indicate that the 
quadrupole field is extensive but weak, its maximum strength density being 2 yo of the 
source density of equivalent interior quadrupoles, yet their computation of the acoustic 
field radiated by these sources gives them equal overall importance. This quadrupole 
field, however, is an important source only in those regions about the rotor moving 
with speeds between the critical air-foil speed and sonic speed. Yu & Schmitz (1980) 
have also demonstrated a significant amplitude arising fIom the quadrupole sources 
for a helicopter blade with a rotor-tip Mach number in the region of 0.9. In  both cases 
the quadrupole field increases very rapidly with rotor-tip Mach number in the tran- 
sonic region and, in the work of Hanson & Fink, decays equally rapidly a t  a Mach 
number of unity. This paper attempts to determine whether or not this effect is 
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generally true, and if not, to determine from an exact calculation what the main role 
of the flow-induced sources is. Evidence is produced that the quadrupoles of potential 
flow are not so much generators of sound but rather terms needed to position correctly 
the waves that are essentially generated at the moving surfaces. 

2. Acoustic analogy 

by moving surfaces in the form 
Ffowcs Williams & Hawkings (1969) posed the acoustic analogy for a fluid bounded 

where the function f is defined to be positive in regions occupied by fluid, zero on the 
bounding surfaces, and negative elsewhere. Equation (2.1) is an exact rearrangement, 
valid everywhere, of the equations of mass and momentum conservation for a fluid of 
density p, bounded by an impermeable surface moving with speed v. Equation (2.1) 
represents a complicated nonlinear diffraction problem, but by interpreting it in 
terms of an acoustic analogy it appears to be more tractable. The field in that analogy 
is driven by three source terms, quadrupole, dipole, and monopole. The quadrupole 
is confined to the region external to the surface f = 0, whilst the dipole and monopole 
sources are distributed over that surface. 

The exactness of (2.1) guarantees that, taken together, the source terms generate 
the correct density field; all the effects of sound generation and propagation are 
accounted for. The major disadvantage of the method is that two of the sources are 
dependent on the field itself. One aim of this work is to determine how successfully 
these source strengths may be approximated independent of the field. 

When the boundaries of the fluid are rigid and move solenoidally it is convenient to 
express the integral form of (2.1) in terms of spatial co-ordinates, q say, that move 
with the bounding surfaces. The perturbation p" = p -po is then given by 

where g = 7 - t + r /c ,  r = Jx - y(q, T)], and f = f(q). The integrands all vanish off the 
hypersurface g = 0, and the latter two integrands also vanish off the hypersurface 

Ffowcs Williams & Hawkings gave several alternative methods for expressing the 
integrals of (2.2), their methods being based on hypersurface integrals. The integrals 
can be either projected onto a co-ordinate hyperplane or resolved onto several hyper- 
planes, or else evaluated directly. 

Projection of the integrals onto the hyperplane spanned by the spatial co-ordinates 

f =  0. 

gives the field as 

4nc2H(f) p"(x, t )  = 

17-2 
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where M, is the Mach number at which the source approaches the field position x, 
and n is the unit normal of the boundary directed into the fluid. Equation (2 .3)  can 
also be obtained from (2 .2 )  by integrating with respect to the source time -7, a method 
equivalent to projecting along the source-time co-ordinate. 

A second projection of the hypersurface g = 0 is best illustrated by introducing 
spherical polar co-ordinates centred at  x to span q-space. Note that if the source 
moves, then the point x moves relative to the q-frame. The volume element may be 
written dy3 = 7;sin Qldy,dQldQ2. This projection is along the yr direction, onto the 
co-ordinate hyperplane spanned by Q,, Q,, and -7. This projection is equivalent to 
integrating (2 .2 )  with respect to r .  The resulting integral expression is 

(2 .4)  
a p i rnjdFdr  a p,vinidI’d-7 

axi s t--7 sin8 ; i t s  t--7 :in83 
4nc2H(f)p”(x , t )  = w . - z d Q d - 7 - -  --+- -- a 2  

where dQ is a spherical surface element within the fluid. For the surface sources a 
spatial frame with non-orthogonal co-ordinates r ,  f, and I’ is used. The directions 
off and r make an angle of 8 with each other, while I’ is orthogonal to both these 
directions and lies in the surface f = 0. The integrand does not contain the Mach 
wave singularity which occurs in (2 .3)  when IM, - 11 = 0. Furthermore, the integration 
element dI’/sin 8 remains bounded when 8 tends to zero. Consequently the integrand 
of the T-integration is discontinuous a t  times corresponding to the start and finish of 
the temporal existence of the I’ integration. The following sections utilize (2 .3)  and 
(2 .4)  to evaluate the density variations induced by the individual source terms of two 
specific compressible fluid flows. 

3. One-dimensional flow 
The first flow examined is one-dimensional and unsteady. Inviscid compressible 

fluid, at  rest, with density p1 and pressure p l ,  occupies the half-space yl > 0. At time 
t = 0, the plane boundary at  y, = 0 accelerates impulsively into the fluid, attaining a 
speed V .  Simultaneously, a plane shock leaves the boundary and moves ahead of it 
into the fluid with speed c,. The shock compresses the fluid that it traverses to a 
density pz and pressure p 2 ,  and accelerates it to a speed V .  The fluid between the 
boundary and the shock moves with this uniform speed, the extent of the moving fluid 
increasing as the shock moves away from the boundary. The flow therefore has an 
unsteady feature, which cannot be eliminated by changing the frame of reference. 

The analysis presented here of the analogous acoustic problem uses (2 .3 ) .  First 
the analogous acoustic sources are derived. Application of mass- and momentum- 
conservation principles to a region containing the shock gives the two relations 

P l C S  = P z ( C s -  V ) ,  ( 3 . 1 ~ )  

( 3 . l b )  

Introducing Ap = p2-pl,  the surface source p0v, has a strength Ap(cs-  V ) ,  the sur- 
face stress term pi, the value Ap(cs- V)csSi,, and the volume stress Tij takes the 
form 

The q-co-ordinate frame is chosen to move steadily relative to the undisturbed fluid 
SO that the moving boundary coincides with the plane ql = 0 for -7 > 0. The y- and 

AP(c, VSiISj, + (c: - C’ - C, V )  Sij). (3 .2 )  
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q-co-ordinates are then related by y = q + cM7, where ( V ,  0,O) = (cM,  0,O) is the 
q-frame velocity relative to the y-frame. 

Denoting with square brackets the retarded-time value of a function defined in q- 
space, we have [ r ]  = Ix - [y]], and writing z = x - r) - V t  gives 

[r] = z + M[r] .  

[r(  1 -Mr)] = - z . M + [ r ]  (1 - M2), 

The results 

Z .  M f ((2. ~ ) 2 +  (1 - ~ 2 )  $}+ 
1-M2 [TI = 

(3.3) 

( 3 . 4 4  

(3.4b) 

follow, allowing the denominator of the integrands of (2.3) to be expressed as func- 
tions of q, that is 

[rll-MrI] = + { ( z . M ) ~ + z ~ ( ~ - M ~ ) } ~  

= + ((71 - x1+ w2 + (1 - M 2 )  ( ( 7 2  - x,)2+ (73 - x3)2)}f. (3.5) 

We consider first the volume integral of (2.3).  The surface integrals are appreciably 
easier to evaluate in the light of this integral. Using (3.5) in (2.3) gives 

The limits of integration require careful evaluation, for the numerator is to be taken 
a t  its retarded time value and the volume stress is unsteady in the q-frame. The stress 
can be written as 

TijH(71) H((c,  - V )  7 - rl)), 

0 < 71 < (c,- V)7. 

showing that the stress is non-zero in the time-dependent region 

(3.7) 

Ix-q+ V t J  = c( t -7)  (7 < t ) .  (3.8) 

To radiate to (x, t ) ,  the point of emission (q, 7) must satisfy 

If x1 < -ct or c,t < xl, no real 7 can satisfy (3.7) and (3.8), so the integration region 
is null and the source does not radiate to (x, t ) .  

If - ct < xI < cst, the region of integration takes one of two possible shapes depending 
on whether the boundary moves subsonically or supersonically. When it moves sub- 
sonically, the region that radiates to (x, t )  is the interior of the ellipsoid of revolution 

that lies in the half-space ql > 0, see figure 1 (a) .  The ellipsoid lies within the region 

(3.10) 

The position of x1 within the interval ( - ct, cs t )  determines the extent to which the 
ellipsoid contributes to the integration; if - ct < x1 < ct then only part of the ellipsoid 
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1 
FIGURE 1. Quadrupole sources for piston flow. The regions of q-space from which quadrupoles 
radiate to the point (x, t ) .  (a) Subsonic piston with Vt  < z1 < ct. (b )  Supersonic piston with 
z1 < Vt ,  the quadrupoles inside the ellipsoid radiate once only, the remainder within the frustum 
radiate twice. 

is integrated over, but if ct < x1 < c,t then the whole ellipsoid is involved. The cylin- 
drical symmetry of (3.6) allows the q1 and q3 integrations to be written in t'he form 

2n( 1 - M 2 )  R dR dTl 

Rmau(ql) is obtained from (3.9) to give a final ql integration: 

Note that the integrand changes its form as ql passes through xl- Vt.  The values of 
the integral and its wave field are given in table 1.  

Field position Field integral, (3.6) 

cat < XI 0 

ct < XI < c,t 

Field strength 

0 

*P 

1 
Vt < 5 1  < ct 

-ct < %I < Vt 
""(-+-) 1 1 
2c c,+c c f V  

XI < -ct  0 0 

TABLE 1. Subsonic piston, quadrupole source 
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Field position Field integral, (3.13) Field strength 

ct < x1 < c,t 

- c t  < x1 < ct 

AP 

TABLE 2.  Sonic piston, quadrupole source 

Ap(cf-c2) I--+- Z C ( C , + C )  4c2 

A simplification is possible when the boundary moves sonically, i.e. M = 1. Then 
(3.6) reduces to 

and the ql integration becomes 

j s g n  (vl - (xl - ct))  {(cs - c )  (xl + ct) - (c8 + c )  a> dyl. cs-c 
The results table now has only two non-zero entries; see table 2. 

When the boundary moves supersonically the basic integral takes the form 

(3.14) 

(3.15) 

The 7-frame now moves supersonically relative to the y-frame. As a consequence the 
denominator of the integrand is real only for values of 7 that lie within the fore and 
aft Mach semi-cones of the point x - V t .  The requirement that 7 < t restricts the 
integration range to the aft semi-cone between x - V t  and the source. Both values of 
r given by (3.4) are now valid, signifying that each point of the ?-frame lying in this 
semi-cone can radiate to x twice. However, the unsteadiness of the stress source in 
the ?-frame limits these points to radiate to x either twice, once, or else not a t  all. 

The region of 7-space that radiates once only to ( x ,  t )  is enclosed by the ellipsoid of 
revolution (3.9), again subject to yl > 0. The points that radiate twice to (x, t )  occupy 
the region enclosed by the aft Mach semi-cone of x - V t  and the ellipsoid (3.9), also 
subject to vl > 0 ;  see figure 1 ( b ) .  For these latter points the integral needs to  be doubled 
to account for the repeated radiation. The final integration is 

(3.16) 

where R(7,) traces out the radius appropriate for the cone or ellipsoid. Again the inte- 
grand changes its form as yl passes through xl- V t .  The non-zero results for the 
supersonic piston are given in table 3. 

The significance of the four regions of field position given in table 3 is as follows: 

Vt < x1 < c,t no surface terms contribute, only quadrupoles radiate 
and these give the complete field; 

ct < x1 < Vt  surface terms radiate twice only; 

C2t - < x1 < ct surface terms may radiate once or twice; 
V 

c2t 
-ct < x1 < - surface terms radiate once only. 

V 



514 H .  W .  Blackburn 

Field position Field integral (3.15) Field strength 

AP 
(21 - v t  < z1 < c,t 2 7 ~ c ~ T 1 1 ~  

c: - c2 

1 

ct < z1 < Vt 

- < XI < ct 
V V + c  c ,+c  

C2t 7rCTl1(2,+Ct)2 (---) 1 

C2t 
-ct  < < - 

V 

TABLE 3. Supersonic piston, quadrupole source 

Field position 

Subsonic piston 

vt < z1 < ct 

-ct  < x1 < Vt 

Sonic piston 

- c t  < 2 1  < ct 

Supersonic piston 

ct < 21 < v t  

C2t - < 21 < ct 
V 

C2t 
-ct  < 2 1  < - 

V 

Monopole field strength 

2(V+C) 

TABLE 4. Surface source 

Dipole field strength 

The evaluation of the surface integrals in ( 2 . 3 )  is now quite straightforward, since 
for these integrals the ql integration is restricted to the region ql = 0. For the sub- 
sonic piston, the monopole term is 

( 3 . 1 7 )  

Again the calculation of the field depends on the values oft  and of xl. The supersonic 
piston is treated similarly. The surface dipole of ( 2 . 3 )  can be evaluated as above with 
the replacement of a/at with - a/axl and change of source strength to Ap(cs  - V) cs .  
The results for the surface sources are summarized in table 4. The tabulated results 
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XI  

Vt  C t  CSt 

FIGURE 2. Schematic representation of the amplitudes and positions of the exact field and the 
surface induced field for the subsonic piston flow, V = 0.5 c. --, exact field; - - -, surface- 
induced field. 

indicate that fraction of the field appearing to originate in the various source terms. 
Figure 2 displays the combined dipole and monopole fields in the region of acoustic 
influence in front of a subsonic piston. The quadrupole field for this case is always 
negative, restoring the field generated a t  the surface to unity, and becomes increasing 
necessary for higher piston speeds. These values can be changed significantly and 
simplified by adopting a slightly modified analogy. 

4. Modified analogy for one-dimensional flow 
The derivation of (2.1) requires the introduction of a parameter c as the phase speed 

of the wave operator. The same parameter must necessarily occur in the definition of 
the quadrupole strength xi where it multiplies an isotropic component. The usual 
value chosen for the phase speed c is the ambient sound speed of the fluid. This choice 
makes a physical interpretation of the analogy plausible, for it causes the analogous 
sources to vanish in those regions of the flow where the disturbances are purely acous- 
tic, and also causes the acoustic waves of the analogy, as governed by the wave 
operator, to travel at  the speed of those being modelled. 

However, an arbitrary choice of phase speed is equally correct although less intuitive. 
In  fact the speed may even be negative; see Ffowcs Williams (1976). In  these cases 
the quadrupole distribution is generally significant in all perturbed regions and plays 
an important role by producing a wave field that appears to travel at  a speed different 
from that of its constituent wavelets. 

The choice of phase speed affects the analogy in two ways: through its occurrence in 
the wave operator and the associated Green function it influences the field by control- 
ling the interval over which a particular source element radiates, and through its 
appearance in the strength of the quadrupole it controls the analogous volume sources. 
The one-dimensional model flow serves to illustrate the effects of choosing a different 
phase speed. Putting c = cs, (2.1) becomes 
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The only sources in this analogy are at the moving boundary, and there are no mech- 
anisms of sound generation in the uniform flow behind the shock, so it is, in this case, 
rather misleading to regard the quadrupole source as representing elements that create 
waves. It is only the ‘wrong’ choice of phase speed for the problem that creates the 
non-zero stress and the resulting quadrupole-driven field. The shock wave travels 
with speed cs, and this is the phase speed of the physical problem. When it is adopted 
in the analogy, the stress field vanishes and all the sources are satisfactorily confined 
t o  the boundary. 

Increasing the phase speed of the wave operator causes the compactness of the 
sources to increase, and since V < c6 the piston cannot now move supersonically. I n  
front of the piston, Vt < x1 < c,t ,  the monopole and dipole of the modified analogy 
in ( 4 . 1 )  contribute identical terms of +Ap each, while behind the piston, c, t < x1 < Vt, 
they contribute equal and opposite values of magnitude 

I n  a recent paper Ffowcs Williams (1979) discusses a different approach to the 
acoustic analogy in which only quadrupole sources are used. The surface sources are 
replaced by quadrupoles within the body. The interior quadrupoles are generally 
stronger than the exterior quadrupoles of the fluid flow, but the exterior quadrupoles 
can occupy a greater volume than the interior ones. 

The conclusion is drawn that, except for flows where the exterior quadrupole- 
strength density is comparable to the interior strength density, any extensive region 
of weak quadrupoles is primarily a phase-shifting device. It is certainly true that in the 
flow model examined here the only role of the quadrupoles is that of a phase shift, and 
by recognizing the complete equivalence of ( 2 . 1 )  and (4 .1 )  the view of the problem 
that was given tentatively by Ffowcs Williams is confirmed. 

5. Two-dimensional flow 
The second flow field considered is two-dimensional and steady. Inviscid compressi- 

ble fluid, at rest, with density p, and pressure p, ,  is disturbed by an infinite wedge, of 
angle a, which moves parallel to its lower surface into the fluid with a supersonic speed 
V .  The wedge moves sufficiently fast for a plane shock to exist attached to the apex 
of the wedge, making an angle /3 with the direction of motion. When viewed from a 
frame moving with the wedge the flow is steady with the shock deflecting the incident 
flow through an angle a and compressing it to density pz and pressure p z ;  see 
figure 3. 

To determine the analogous sources, the atmospheric frame in which the undisturbed 
fluid is a t  rest is used. In  this frame the shock has a normal velocity cs = V sin 01, and 
the disturbed fluid between the shock and the upper wedge surface has a velocity 
U = V sin alcos (/3 - a) normal to the shock. The sources are again most conveniently 
expressed in terms of Ap and V .  Mass and momentum conservation a t  the shock 
furnish 

pz = Apes, ( 5 . 1 ~ )  

(5.1 b )  AP = PZ--PI = PlCSU, 
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Shock wave 

/ Undisturbed fluid 

Mach-wave 
position 
/ 

/ 
/ 

/ 
Disturbed fluid 

* 7)1 

FIGURE 3. Geometry of wedge flow. A wedge of angle a moves supersonically at speed V ,  asso- 
ciated Mach angle p. A plane shock is attached to  the wedge apex and makes an angle p with 
the base of the wedge. The undisturbed fluid is compressed and accelerated t o  velocity U on 
crossing the shock. 

giving 

V 2  cos /3 sin /3 sin (p - a) 
cos (p  - a) 

cos /3 sin (/3 - a) 

Ap = Ap Y 

P1= AP sins 

( 5 . 2 ~ )  

(5 .26)  

( 5 . 2 ~ )  

With the 1-axis direction taken parallel to the flow of the disturbed fluid, the non- 
zero components of the Lighthill stress qj are 

( 5 . 3 ~ )  

T,, = T33 = Ap -c2Ap6i1 = AP{c,(c, - U )  - c2S,i,j}. (5.36) 

Since the fluid flow, and therefore the analogous sources, become steady in a frame 
moving with the wedge, it is easier to evaluate the field at a point 5 fixed in the wedge 
frame, i.e. moving with the wedge when viewed from the y-frame. Using the trans- 
formations for the field derivatives 

TI, = Ap{V2sin2p-c2} = Ap(c,2-c2), 

expression (2.2) becomes 

(5.4) 
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FIGURE 4. Geometry of the curve r. In  q-space, at  time 7 ,  the sphere g = O(T = c ( t - - 7 ) ) ,  centre 
x -V7, intersects the half-planef = O( - v1 sin a + is cos a = 0, vl > 0) along the circular arc l?. 
Sources on I? radiate to x - Vr along directions making an angle 0 with the normal n. 

The integrals can be projected onto the appropriate (a, 7 ) -  and (I?, r)-subspaces 
according to (2.4), giving 

The surface integrals are evaluated first. They combine to give 

( A p  (sina- a -coscr-) a +pl  Vsina-) a se 
at1 a t 2  atl rs ine’  (5.7) 

where the directions of El and q1 are parallel to the incident flow as observed in the 
wedge frame, so that af /ar, = ( - sin a, cos a, 0 )  and V = ( - V ,  0,O) .  

Now (rsin f?)-ldr is the angular element d# subtended by the arc element d r  on 
the upper surface of the wedge; see figure 4. Hence / (rsin 8)-1dI’dT can be rewritten 
as /d#d7 = / AT(#)  d#, where AT(#) is the time interval for which that surface element 
whose azimuthal position is # radiates to 5. After much algebra (5.7) evaluates to 

{61~inp-t2cosp}, (5 .8 )  
(Ap (sin a z  a - cos a 

where p is the Mach angle corresponding to the speed of the wedge. Hence the surface 
sources cause a density disturbance 

tan p 
2c2 sin (p - a) {Ap cos ( p  - a) + p1 V 2  sin a sin p}. (5.9) 

This field is confined to a region within the Mach wave of the wedge apex, since it is a 
disturbance propagating at  the ambient speed of sound. 
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The volume distribution of quadrupoles generates the whole density perturbation 
when $ lies behind the shock wave and ahead of the Mach wave; but when $ lies within 
the Mach-wave region above the wedge, that quadrupole contribution is 

1 
- t a n p  ( 'OS (p+,u) [p2 U2 + Ap - c2Ap] + sin (p -a) 

sin (P +P) 

x [p2  U2cos(~-a)cos(~-,u)+(Ap-c2Ap)cos(p-a)]]. (5.10) 

Within the wedge, and below its lower surface the fields of the analogous sources cancel 
t o  give zero perturbation. 

6. Alternative source descriptions 
In  the absence of an underlying physical basis to the source description of (2.1) it 

is conceivable that it may not be the most useful description when boundaries are 
present in the flow. In  fact the sources of (2.1) may be reformulated in a variety of 
ways. For instance, in their original paper, Ffowcs Williams & Hawkings, examining 
the Mach wave generated by a rigid impermeable surface, expressed the monopole 
source as volume dipole and quadrupole sources within the body. This is possible 
because the monopole has zero total instantaneous strength; but for the general case 
any advantages of this description are uncertain. 

Two alternative systems of analogous sources that de-emphasize the explicit 
quadrupole component of (2.1) are now examined using the wedge-flow problem. The 
first alternative system rewrites the volume quadrupole source of (2.1) as a volume 
dipole source together with a surface dipole a t  the boundary of the fluid: 

The analogous sources of (2.1) then become 

The surface-located sources now involve the fluid velocity and density a t  the bounding 
surface, but not the surface pressure. 

Applying this system to the wedge flow, in the region between the Mach line of the 
apex and the upper surface of the wedge this new surface dipole contributes to the 
field a component 

a 1) = (  cos (p - a)  a t 2  ( a51 a t 2  

p 2  V 2  sin2 a a a ( - sinpz + cosp- + ~ p c 2  -sin a- + cosa- 

tan ,u 
27rc2 sin (p - a) X {El sin P - 52 cos PI 

sin a sin B cos (p - p)  
sin ,u cos ,u sin (p - a) 

sin 2p tan (p - a) 
sin 2p tan (,u - a) = & A p (  - + (6.3) 
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The uniform stress field makes the volume dipole strength aTij/ayj non-zero only 
at the shock front, so the integration for the volume dipoles takes the form 1.. . d r d r ,  
where J? is the intersection of the shock and the sonic surface r = c ( t - 7 ) .  This com- 
ponent of the source generates the complete radiated field in the region between the 
shock and the apex Mach line, and a component 

between the apex Mach line and the upper wedge surface. 
This interpretation of the analogous sources demonstrates the point made by 

Ffowcs W’illiams & Hawkings when referring to the estimation of the wave field 
generated by a high-speed surface; the field derivatives acting on the quadrupole 
integral produce further integrals a t  the surface of the body. Here the sources have 
been manipulated to isolate the additional dipole surface terms but this has required 
the replacement of the volume quadrupoles with volume dipoles. 

A second alternative system ignores the multipole classification of the source terms 
and evaluates their fields directly as if they were just simple sources. The two surface 
terms of (2.l), when expressed in the q-co-ordinate frame in which the wedge is a t  
rest, have forms similar to  each other that  combine as 

Equations (2.3) and (3.15) may be used to obtain the field as 

The range of integration is over those z for which the denominator is rea.1, as in the 
one-dimensional problem. This region is the aft Mach cone of the point 5. Integrating 
out the z3 dependence gives 

where g > 0 lies in the (zl, 2,)-plane bounded by the lines 

g, = (rl - tJ sin 0 T (7, - t,) cos 0. 

Integration by parts then gives 

There are two cases to consider; either 5 lies above the wedge, or 6 lies below the 
wedge, in which cases g = g, or g = g- respectively should be used. Changing the co- 
ordinates to f and g* requires use of the relation 

d f  ds* 
- Jsin (p 5 a)[ ’ dz ldz  - 

and gives the field itt (6, t )  as 

tan p 
Zc21 sin (p T a) I { Ap cos a +pl  V 2  sin a sinp}. (6.10) 



Quadrupoles in potential $ow 52 1 

The component of (6.10) attributable to the dipole term of (2.1) is 

Ap sin 2/3 tan (p - a )  cos (p - a )  
2sin2plsin(p~cta)j ’ i 

and that attributable to the monopole term is 

Ap cos psin (p- a )  
2 c o s p ~ s i n ( p ~  a ) /  

(6.11) 

(6.12) 

The remaining source 8{!& H (  f )}/ayi ayj has non-zero components a t  the shock and 
upper wedge surface. The shock gives an effective source, when viewed in the wedge 
frame, of 

, s = -r,sin/3+r2cos/3, T..- PH(S)  
ari arj (6.13) 

which gives a field, using the above method, of 

In  the region of Mach-wave influence, only the g, component counts, and the field is 

Ap(c: - c2) tan p cos (p + p )  
2c21sin (P+,u)l 

- (6.14) 

Similarly, the effective source a t  the upper wedge surface is T, ia2H(f) / i3r iaqj ,  which 
generates a field 

Ap tan p 
2c21sin (p + a)[ { p 2 U 2 ~ ~ ~ ( p - - a )  C O S ( ~ + ~ ) +  ( A ~ - c ~ A ~ ) c o s ( , u + ~ ) }  ( 6 . 1 5 ~ )  

below the wedge surface, and 

Ap tan p 
2c21sin (p - a )  I - (p2 U 2  cos (P-a) cos ( p - , ~ )  + (Ap  - c2Ap) cos (p - a)}  (6 .15b)  

between the apex Mach line and the upper wedge surface. 
Only the shock-located source is able to radiate to the region between the shock 

and the apex Mach line, and it does so in a manner identical to the one-dimensional 
shock to generate the complete field. All four components of the source can radiate to 
the region between the apex Mach line and the upper wedge surface, and their overall 
perturbation is Ap. In  the Mach-wave region within and below the wedge the total 
radiated field is zero, as it should be. 

7. Fields of wedge-flow sources 
Three source systems have been introduced: 
(1) volume quadrupoles, surface dipoles, and surface monopoles, as in (2.1); 
(2) volume dipoles, surface dipoles, and surface monopolea, as in (6.2); 
(3) simple sources, as in (6.5) and (6.13). 
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FIGURE 5 .  The wave amplitude, within the Mach-wave region, due to the total-quadrupole 
source, expressed as a fraction of the real amplitude Ap,  (thick contours) ; and the shock-wave 
angle 8, plotted for constant wedge angle a, (thin contours) as a function of the Mach number M .  

The discussion of the two model problems shows that only for system (3) can the fields 
of all the source terms be obtained easily. The fields arising from the sources of ( 1 )  
and ( 2 )  can be determined by suitable combinations of the fields of (3). The sources of 
(3) for the models are as follows. 

(i) A source located a t  the shock and a similar source a t  the wedge upper surface. 
Together these are equivalent to the volume quadrupoles of ( l ) ,  and also to the volume 
dipoles, and part of the surface dipoles of (2). 

(ii) A surface dipole common to ( I ) ,  (2) and (3). 
(iii) A surface monopole, also common to all three systems. For the wedge flow, in 

the region between the apex Mach line and the upper wedge surface, the magnitudes 
of the fields of the four sources of (3) are: 
for the shock-located source 

sin 2/3 
3AP ( 1  -mi) ; 

for the quadrupole discontinuity a t  the wedge surface 

( 7 . 1 ~ )  

( 7 . 1 b )  1; sin 2/3 tan (/3 - p) 
(tan (p - a )  -sin,u cospsin (p - a )  -sin 2,u tan (,u - a) 

tan p sin a sin /3 cos (/3 - p) 
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FIGURE 6. The wave amplitude, within the Mach-wave region, due to the shock-quadrupole 
source, expressed as a fraction of the real amplitude Ap, (thick contours) ; and the shock wave 
angle p, plotted for constant wedge angle u, (thin contours) as a function of the Mach number M .  

for the original surface dipole 
ain 2p tan (p - a) 

tApsin 2,u tan (,u -a); 

and for the original surface monopole 

cos /3 sin (p  - a) 
cos ,u sin (,u - a) 

( 7 . 1 ~ )  

( 7 . l d )  

The independent parameters are the wedge angle a, and the wedge speed cM,  or 
equivalently the Mach angle ,u = arcsin (M-1). The four fields of ( 7 . 1 )  are plotted in 
figures 6-8 and 10. The quadrupole, dipole, and monopole fields of (2.1) are plotted in 
figures 5 ,  8 and 10. They show that for thin wedges, a < 5", and upper transonic 
speeds, 1.0 < M < 1.5, the quadrupole sources contribute a t  most 20%, either 
positively or negatively, of the actual wave amplitude. The corresponding dipoles 
generate over half of the wave, and the monopole component increases through half 
as the wedge speed increases. For very thin wedges the monopole and dipole dominate 
the final field. 

In  systems (2) and (3) the conventional quadrupole source is divided into shock and 
surface located sources. For system ( 2 )  the shock constitutes the volume dipole source, 
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FIGURE 7.  The wave amplitude, within the Maoh-wave region, due to the surface-quadrupole 
source, expressed as a fraction of the real amplitude Ap, (thick contours) ; and the shock-wave 
angle /I, plotted for constant wedge angle a, (thin contours) as a function of the Mach number M .  

and the remainder of the quadrupole component is concentrated a t  the wedge surface. 
Their fields are plotted in figures 6 and 7. I n  the above flow regime these fields are 
relatively weak, amounting to between - 10 yo and + 20 yo of the final amplitude for 
the shock and - 20 yo to 0 % for the surface quadrupole, which is always negative. 

A comparison is made between the surface dipole field described in (2.1) using the 
exact flow details and the equivalent dipole field derived from a linear estimate of the 
surface pressure 

The linearized field is almost half the size of its exact counterpart for thin wedges a t  
low supersonic speeds, see figure 9. 

For a constant wedge speed, as the wedge angle increases the exact surface dipole 
and surface quadrupole fields both increase in magnitude but their opposite signs 
cause them to interfere destructively. This suggests, perhaps, that system ( 2 )  may be 
more useful than systems (1) and (3). 

The various fields are also calculated and plotted in figures 5-10 for the cases of 
the wedge supporting a strong shock. Here the quadrupoles are more dominant than 
those of the weak flows, especially for thin wedges in the speed range 1.0 < M < 2.0, 
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FIGURE 8. The wave amplitude, within the Mach-wave region, due to the exact-surface-dipole 
source, expressed as a fraction of the real amplitude Ap,  (thick contours) ; and the shock-wave 
angle /I, plotted for constant wedge angle a, (thin contours) as a function of the Mach number M .  

where the quadrupole component of the wave can approach half the total wave 
amplitude. For these cases the dipole is the dominant term, giving typically 70 % of 
the wave, and the monopoles a t  most 20 %. 

8. Phase shifts induced by quadrupoles 
The model flows discussed are created in practice by moving boundaries, yet the 

source systems discussed require sources to exist within the fluid as well as a t  the 
bounding surfaces. These volume sources are due to non-linear features of the flow, 
and are the quadrupoles of (2.1). I n  the piston problem, choosing the phase speed of 
the analogy to match the shock speed of the disturbed fluid eliminates the quadrupole 
source distribution and confines the sources to the boundary. 

That the volume quadrupoles are related to the phase speed of a propagating wave 
is a feature that first arose in Lighthill's (1953) treatment of sound scattering by tur- 
bulence. His model, in which the wavelets propagate with a constant phase speed, led 
to the following dilemma; when the phase speeds of the incident sound pulse and the 
scattered wave were identical a singularity arose in the forward scattered wave. For 
the case of a shock propagating through turbuIence Lighthill argued that the difference 
between the speed of a shock and that of the acoustic wavelets would avoid the singu- 
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FIGURE 9. The wave amplitude, within the Mach-wave region, due to  the linearized-surface- 
dipole source, expressed as a fraction of the real amplitude Ap,  (thick contours) ; and the shock- 
wave angle /3, plotted for constant wedge angle a, (thin contours) as a function of the Mach 
number M .  

larity, but he gave no prescription for the general resolution of the difficulty. Crow 
(1969) tackled a similar problem with the same quadrupole scattering mechanism, 
and revealed the singularity to be integrable. The integrated value gave, to first order 
in the scattering variable, the displacement of the incident wave due to turbulent 
convection and local variations in the speed of sound. Crow thereby demonstrated 
that an acoustic disturbance propagating across a turbulent region is displaced because 
of phase-speed variations in the turbulence as well as being scattered, the phase-speed 
variations occurring at  the same order of approximation as the scattering. An incident 
step wave H ( x  + c t )  is displaced by the turbulence in which it moves with phase speed 
C t  to 

When this is expanded in a perturbation series as 

H ( x + ~ t ) +  ( c , - c ) d t S ( x + ~ t ) +  ... (8.2) 

the singular first-order scattering term can be seen in its true perspective. The scatter- 
ing appears to produce a pulse-like wave that is in fact only part of a series expansion 
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FIQURE 10. The wave amplitude, within the Mach wave region, due to the surface-monopole 
source, expressed as a fraction of the real amplitude Ap, (thick contours) ; and the shock-wave 
angle /I, plotted for constant wedge angle a, (thin contours) as a function of the Mach number M .  

for the scattered wave. The series expansion for the step wave does not converge in 
the familiar sense. GeneraIly the first-order scattering contributes 

to the incident wave p ( x  + ct),  where 7 is the displacement in arrival time arising from 
the past variations in phase speed. 

The model problems discussed involve constant-amplitude waves, and the non- 
linear relationship between ampli'tude and phase speed has been avoided. But the 
one-dimensional piston-problem can be extended easily to include the case of simple- 
wave generation by a moving piston. The equations of mass and momentum con- 
servation can be combined and written in characteristic form 

This shows that the quantities Sp-l c(p) dp 
dx/& = u 4 c. Restricting the fluid to a perfect gas gives 

u are constant on the characteristics 

2c S?=- y -  1'  
(8.5) 
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If the fluid lying in the region x > 0 is at rest prior to the motion of the piston, then 
the characteristics dx/dt = u + c extend into undisturbed fluid where IL = 0, and 
c = co. On all these characteristics, therefore, Jp-Ic(p) dp - u takes the value 2c,/(y - l) ,  
and so the value of c on these characteristics is given by 

Where these characteristics meet the piston, the fluid velocity u is that  of the piston 
V and so the value of 1p- I  c ( p )  dp is 2c0/(y - 1)  + V .  On the characteristics dx/dt = u + c, 
therefore, 

2c 
+ 2 V  = - + v. 2CO +u=- 

Y-1 Y - 1  
Conseauentlv 

(;+(u+c)- u= -+(c0+Q(y+1)u)- ax u = o .  ax (: a )  (8.7) 

This is a travelling-wave equation with an amplitude-dependent phase speed 

c,+ &(y + 1 )  u. 

The phase speed can if desired be adjusted to some constant co + &(y + 1 )  v, say, but 
only a t  the expense of introducing an inhomogeneity or source term. 

The wave equation then takes the form 

The amplitude-dependent wave is now described by a superposition of constant- 
speed wavelets driven by a nonlinear source term. Only when the correct phase speed 
c0 + t ( y  + 1 )  u, rather than co + &(y + 1 )  v, is chosen does the equation become source- 
free. Writing (8.8) as 

(8.9) 
D a 
- ( u )  = - ( - $ ( y + l ) ( u - v ) 2 )  Dt ax 

enables it to be written in integral form 

+o+ (co+ &(Y+ 1 )  6, t )  = u s  - f(r + 1) ax a ((u - v)2) 
It: z=z,-(c~+g(y+l)v~(t-7) 

d7, (8.10) 

where us is the surface velocity a t  the time to when the wavelet left the surface. 
Additionally, the effect of a moving boundary, generating the wave say, can be in- 
corporated to give inhomogeneous terms a t  the boundary and within the wave: 

D 
Dt 
- ( H u )  = {*(r + 1) (u - v)2 - t ( y  - 1) u(u- v) + uco + -i(y - 1 )  u2] 

8H a 
x --- {$(y+ l ) ( u - v ) 2 H }  (8.11) ax ax 

The choice u = v eliminates the volume sources and some of the surface sources. The 
remaining surface terms disappear when either the boundary stops, or moves with 
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speed - 2c,/(y - 1)  to rarefy the medium. In  the latter case (8.10) gives only the trivial 
result, the velocity a t  the bounding surface. The optimal form of the analogy in this 
one-dimensional case gives therefore the velocity field as u = us a t  the correct time, i.e. 

u(x, t )  = u& - ./(C, + $(y + 1) u)). (8.12) 

The velocity wave is expressible in either homogeneous or inhomogeneous form; 
the latter gives a constant phase speed and the former an amplitude-dependent speed. 
A non-zero quadrupole distribution indicates a disparity between the physical phase 
speed and the imposed phase speed. This observation suggests that nonlinear flow 
effects, or quadrupoles, in irrotational flows amount to little more than a phase shift, 
and lead one to conclude that those quadrupoles are more reasonably thought of as 
‘wave-positioning ’ devices than they are wave generators. This view is consistent 
with Howe’s (1975) analogy in which the acoustic sources in fluid flows are identified 
as requiring vorticity or entropy production. However both that analogy and these 
examples deal only with flows that are steady or quasisteady. 

9. Conclusions 
The two model flows illustrating the acoustic analogy indicate that the quadrupole 

source of (2.1) is very significant for highly disturbed flows. It is the dominant source 
for the high-subsonic-speed piston, for the transonic-speed thin wedge (a  c 5’)) and 
also for the high-supersonic-speed wedge. But the quadrupole is the least significant 
source for weakly disturbed flows, being negligible for the low-speed piston flow and 
for thin wedges moving in the speed range 1.3 c M c 1.9. This concurs with Hanson 
& Fink (1978)) where only quadrupoles in the transonic speed range are appreciable. 

But the role of the quadrupole term in these flows appears to be to re-position a 
surface-generated disturbance. This is made evident by adapting the phase speed of 
the analogy to match that of the flow, and it can easily be demonstrated for the wedge 
by using c = V sinp in (7 .1)  to make p = p. Changing the phase speed alters only the 
quadrupole source which can, in these problems, be eliminated altogether by selecting 
a particular phase speed for the acoustic analogy. 

The presence of a shock produces a source term whose field is generally weak except 
a t  the transonic condition. This supports the impression that shocks should not be 
regarded as sources of waves in the acoustic analogy. 

The boundary to the quadrupole source produces, in these cases, a high-amplitude 
field that is largely cancelled by an associated high-amplitude dipole field. The analogy 
of (2.1) does not appear helpful, since the separate fields of the sources, although indi- 
vidually large, interfere significantly, and the final field cannot be approximated 
usefully from a sub-set of the sources. This is in contradistinction to Hanson & Fink 
(1978) and Yu & Schmitz (1980), where for subsonic rotors, as opposed to the super- 
sonic surfaces treated here, there is little destructive interference between the com- 
pone n t  fields. 

Finally, it is shown that a linear approximation to the dipole strength underestimates 
the field to the extent of 100 yo and more for high-transonic-speed thin wedges and 
this may be of importance to the design of computational models based on (2.1). 
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